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Test your surrogate data before you test for nonlinearity

D. Kugiumtzis*
Max-Planck-Institute for Physics of Complex Systems, No¨thnitzer Strasse 38, 01187 Dresden, Germany

~Received 10 February 1999!

The schemes for the generation of surrogate data in order to test the null hypothesis of linear stochastic
process undergoing nonlinear static transform are investigated as to their consistency in representing the null
hypothesis. In particular, we pinpoint some important caveats of the prominent algorithm of amplitude adjusted
Fourier transform surrogates~AAFT! and compare it to the iterated AAFT, which is more consistent in
representing the null hypothesis. It turns out that in many applications with real data the inferences of nonlin-
earity after marginal rejection of the null hypothesis were premature and have to be reinvestigated taking into
account the inaccuracies in the AAFT algorithm, mainly concerning the mismatching of the linear correlations.
In order to deal with such inaccuracies, we propose the use of linear together with nonlinear polynomials as
discriminating statistics. The application of this setup to some well-known real data sets cautions against the
use of the AAFT algorithm.@S1063-651X~99!02509-X#

PACS number~s!: 05.45.Tp, 05.10.Ln
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I. INTRODUCTION

Often an indirect approach is followed to investigate t
existence of nonlinear dynamics in time series by mean
hypothesis testing using surrogate data@1,2#. To this respect,
the null hypothesis of a linear stochastic process underg
a nonlinear static transform is considered as the most ap
priate because it is the closest to nonlinearity one can
with linear dynamics. Surrogate data representing this
hypothesis ought to be random data, but possess the s
power spectrum~or autocorrelation! and amplitude distribu-
tion as the original time series. To test the null hypothesi
method sensitive to nonlinearity is applied to the origin
time series and to a set of surrogate time series. The
hypothesis is rejected if a statistic derived from the meth
statistically discriminates the original from the surroga
data.

For the generation of surrogate data, the algorithm of
so-called amplitude adjusted Fourier transform~AAFT!, by
Theiler and co-workers@1,2#, has been followed in a numbe
of applications so far@3–12#.

Recently, another algorithm similar to that of Theiler, b
making use of an iterative scheme in order to achieve a
trarily close approximation to the autocorrelation and
amplitude distribution, was proposed by Schreiber a
Schmitz@13#. We refer to it as the iterative AAFT~IAAFT !
algorithm. A more advanced algorithm designed to gene
surrogates for any given constraints is supposed to be
accurate for moderate and large data sets, but in the dete
cost of long computation time@14#. Therefore, it is not con-
sidered in our comparative study.

Other schemes circumvent the problem of non-Gaus
distribution by making first a so-called ‘‘Gaussianization’’
the original data and proceed with this data set genera
Fourier transform~FT! surrogates instead@15–17#. In this
way the results of the FT surrogate test concern the ‘‘Gau
ianized’’ data and it is not clear why the same results sho
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be valid for the original non-Gaussian data.
Shortcomings of the AAFT algorithm due to the use of F

on short periodic signals and signals with long coher
times have been reported elsewhere@18,15,19#. Here, we
pinpoint more general caveats of the method, often expe
to occur in applications, and give comparative results w
the IAAFT method.

In Sec. II, the AAFT and IAAFT algorithms are presente
and discussed. In Sec. III, the dependence of the hypoth
test on the generating scheme for the surrogate data is e
ined and in Sec. IV the performance of the algorithms on r
data is presented.

II. AAFT AND IAAFT ALGORITHMS

Let $xi%, i 51, . . . ,N, be the observed time series. A
cording to the null hypothesis,xi5h(si), where $si%, i
51, . . . ,N, is a realization of a Gaussian stochastic proc
~and thus linear! and h is a static measurement function
possibly nonlinear. In order for a surrogate data set$z% ~of the
same lengthN) to represent the null hypothesis, it must fu
fill the following two conditions: ~i! Rz(t)5Rx(t) for t
51, . . . ,t8; ~ii ! Az(z)5Ax(x), whereR is the autocorrela-
tion, A is the empirical amplitude distribution, andt8 is a
sufficiently large lag time.

A. The AAFT algorithm

The AAFT algorithm starts with the important assumpti
thath is a monotonic function, i.e.,h21 exists. The idea is to
simulate firsth21 ~by reordering white noise data to have th
same rank structure as$x%, call it $y%, step 1!, then make a
randomized copy of the obtained version of$s% ~by making a
FT surrogate of$y%, call it $yFT%, step 2!, and transform it
back simulatingh ~by reordering$x% to have the same ran
structure as$yFT%, call it $z%, step 3!.

In step 1, it is attempted to bring$x% back to$s%, in a loose
statistic manner, by constructing a time series with sim
structure to$x%, but with Gaussian amplitude distribution
However, it is not clear what is the impact of this process
2808 © 1999 The American Physical Society



-

1

em
-
io

ffe

o

b

s

th
e

(1

-
igi
g

-

m
n
ss

g

th
o
th
ig
st

tl

ep-
the
ies
ter
n

g-
-

due
in

it

nt

er

n

For
age
ta at

PRE 60 2809TEST YOUR SURROGATE DATA BEFORE YOU TEST . . .
the autocorrelationR. From the probabilistic theory for trans
formations of stochastic variables, it is known thatRx

<uRsu in general @20#, and moreoverRx5g(Rs), for a
smooth functiong ~under some assumptions onh). Assum-
ing that h21 exists and is successfully simulated in step
we get Ry'Rs and thusRx<uRyu. Analytic verification of
this is not possible because reordering constitutes an ‘‘
pirical transformation.’’ Whenh is not monotonic or not suc
cessfully simulated by the reordering in step 1, the relat
Ry'Rs cannot be established andRy will be somehow close
to Rx .

The phase randomization process in step 2 does not a
R apart from statistical fluctuations (Ry'Ry

FT), nor does it
alter the Gaussian distribution, but it just destroys any p
sible nonlinear structure in$y%. The reordering in step 3
givesAz(z)5Ax(x). This process also changesR according
to the functiong, i.e., Rz5g(Ry), assuming again thath is
successfully simulated by the reordering. For the latter to
true, a necessary condition isRz<uRyu. So, the preservation
of the autocorrelationRz'Rx is established only if in step 1
Ry'Rs is achieved after the reordering, which is not the ca
when h is not monotonic. Otherwise, the AAFT algorithm
gives biased autocorrelation with a bias determined by
reordering in step 1 and the form ofg, and subsequently th
form of h.

To elucidate, we consider the simplest case of an AR
process@si5bsi 211wi , b50.4, andwi;N(0,12b2)#, and
static power transforms,x5h(s)5sa, for positivea. For si
PR, h21 exists only for odd values ofa. For even values of
a, a deviation ofRy from Rs is expected resulting in surro
gate data with different autocorrelation than that of the or
nal (RzÞRx). Monte Carlo simulation approves this findin
as shown in Fig. 1~a! (N52048, a51,2, . . .,10, M540
surrogates, 100 realizations!. Note that forRy(1) the stan-
dard deviation~SD! is almost zero indicating that all 40 re
ordered noise data$y% obtain about the sameRy(1) for each
realization of$s%, which depends onRs(1) at each realiza-
tion. The results show the good matchingRy(1)'Rs(1) and
Rz(1)'Rx(1) for odd a. For evena, Ry(1) is always on
the same level, well belowRs(1), andRz(1),Rx(1), with
the difference to decrease with larger powers.

B. The IAAFT algorithm

The IAAFT algorithm makes no assumption for the for
of the h transform@13#. Starting with a random permutatio
$z(0)% of the data$x%, the idea is to repeat a two-step proce
approachRx in the first step~by bringing the power spectrum
of $z( i )% to be identical to that of$x%, call the resulting time
series$y( i )%), and regain the identicalAx in the second step
~by reordering$x% to have the same rank structure as$y( i )%,
call it $z( i 11)%).

The desired power spectrum gained in step 1 is chan
in step 2 and therefore several iterations are required
achieve convergence of the power spectrum. The algori
terminates when the exact reordering is repeated in two c
secutive iterations, indicating that the power spectrum of
surrogate cannot be brought closer to the original. The or
nal algorithm gives as outcome the data set derived from
2 at the last iteration ($z( i 11)%, wherei is the last iteration!,
here denoted IAAFT-1. The IAAFT-1 surrogate has exac
,
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the same amplitude distribution as the original, but discr
ancies in autocorrelation are likely to occur. If one seeks
best matching in autocorrelation leaving the discrepanc
for the amplitude distribution, the data set from step 1 af
the last iteration ($y( i )%), denoted IAAFT-2, must be chose
instead.

The bias of the autocorrelation with IAAFT-1 can be si
nificant, as shown in Fig. 1~b!. For reasons we cannot ex
plain, the bias inR(1) gets larger for odd values ofa ~mono-
tonic h), for which AAFT gives no bias~the same bias was
observed using 16 384 samples, ruling out that it can be
to limited data size!. On the other hand, the matching
autocorrelation with IAAFT-2 was perfect~not shown!. The
surrogate data derived from the IAAFT algorithm exhib
little ~IAAFT-1! or essentially zero~IAAFT-2! variation in
autocorrelation compared to AAFT. This is an importa

FIG. 1. Autocorrelation for lag 1 as a function of the pow
exponent of the transformh for an AR~1! process and for AAFT
surrogates in~a! and IAAFT-1 surrogates in~b!. The averageR(1)
for $s%, $x%, $y%, and $z% are as denoted in the legend. TheRs(1)
for 100 realizations of$s% are shown with the short line segments o
the right upper side of the figures. ForRx(1), the SDover the 100
realizations is denoted with error bars around the average.
Ry(1) andRz(1), thezones around the average denote the aver
over 100 realizations of the SD computed from 40 surrogate da
each realization.
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2810 PRE 60D. KUGIUMTZIS
property of the IAAFT algorithm in general because it i
creases the significance of the discriminating statistic, as
be shown below.

III. EFFECT OF BIASED AUTOCORRELATION

By construction, the IAAFT algorithm can represent t
null hypothesis regardless of the form ofh, while the AAFT
algorithm cannot represent it whenh is not monotonic. One
can argue that the deviation in the autocorrelation due
possible nonmonotonicity ofh is small and does not affec
the results of the test. This is correct only for discriminati
statistics which are not sensitive to linear data correlatio
but most of the nonlinear methods, including all nonline
prediction models, are sensitive to data correlations
therefore they are supposed to have the power to disting
nonlinear correlations from linear.

We show in Fig. 2 the results of the test with AAFT an
IAAFT surrogate data from the example with the AR~1! pro-

FIG. 2. Rejections of the null hypothesis using two discrimin
ing statistics plotted as a function of the power exponent of
transformh for the data used in Fig. 1. In~a!, the statistic is the
correlation coefficient of the one step ahead fitr(1) using an AR~1!
model and in~b! the r(1) using a local average mapping~LAM !.
The rejections yield AAFT, IAAFT-1, and IAAFT-2 as denoted
the legend.
ill

to

s,
r
d
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cess. Two discriminating statistics are drawn from the cor
lation coefficient of the one-step-ahead fitr(1) using an
AR~1! model and from ther(1) using a local average map
ping ~LAM ! ~embedding dimensionm53, delay timet51,
neighborsk55). The significance of each statisticq @here
q5r(1)# is computed as

S5
uq02q̄u

sq
, ~1!

whereq0 is for the original data, andq̄ andsq are the mean
and SD ofqi , i 51, . . . ,M , for the M surrogate data~here
M540). The significanceS is a dimensionless quantity, bu
it is customarily given in units of ‘‘sigmas’’s. A value of
2s suggests the rejection of the null hypothesis at the 9
confidence level.

For AAFT, the number of rejections with both AR~1! and
LAM is at the level of the ‘‘size’’ of the test(5%, denoted
with a horizontal line in Fig. 2! whenh is monotonic, but at
much higher levels whenh is not monotonic, depending ac
tually on the magnitude ofa. For the IAAFT algorithm the
results are very different. Using IAAFT-1 surrogates t
number of rejections is almost always much larger than
‘‘size’’ of the test and the opposite feature from that f
AAFT is somehow observed for the even and odd values
a. The extremely large number of rejections with IAAFT-1
actually due to the small variance of the statistics for
IAAFT surrogates@see also Fig. 1~b!#. On the other hand, the
r(1) of the AR~1! for the IAAFT-2 surrogates seems to co
incide with the original because, besides the small SD in
~1!, the significance is almost always below 2s. Note that
ther(1) of AR~1! behaves similar toR(1) for this particular
example. The values ofr(1) of LAM for each surrogate data
group are more spread out, giving thus fewer rejections
AAFT and IAAFT-1. For IAAFT-2 and fora53 anda55,
there are too many rejections and this cannot be easily
plained since this behavior is not observed for the lin
measure. We suspect that the rejections are due to the d
ence in the amplitude distribution of the IAAFT-2 surroga
data from the original, which may effect measures based
the local distribution of the data such as LAM.

Simulations with AR processes of higher order and w
stronger correlations showed qualitatively the same resu

IV. SURROGATE TESTS WITH AAFT AND IAAFT
ON REAL DATA

In order to verify the effect of the bias in autocorrelatio
in a more comprehensive manner, we consider in the follo
ing examples with real data the discriminating statisticsqi

5r(T,i ), i 51, . . . ,n, from the T-time-step-ahead fit with
polynomials pi of the Volterra series of degreed and
memory~or embedding dimension! m,

x̂i 1T5pn~xi !5pn~xi ,xi 21 , . . . ,xi 2(m21)!

5a01a1xi1•••1amxi 2(m21)1am11xi
2

1am12xixi 211•••1an21xi 2(m21)
d , ~2!

wheren5(m1d)!/(m!d!) is the total number of terms. To
distinguish nonlinearity,d52 is sufficient. Starting from

-
e
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PRE 60 2811TEST YOUR SURROGATE DATA BEFORE YOU TEST . . .
p15a0, we constructn polynomials adding one term at
time. Note thatp2 , . . . ,pm11 are actually the linear AR
models of order 1, . . . ,m, respectively, and the first nonlin
ear term enters in the polynomialpm12. So, if the data con-
tain dynamic nonlinearity, this can be diagnosed by an
crease ofr(T,i ) when nonlinear terms are added in t
polynomial form. This constitutes a direct test for nonline
ity, independent of the surrogate test, and its significanc
determined by the increase ofr(T,i ) for i .m11. Note that
a smooth increase ofr(T,i ) with the polynomial terms is
always expected because the fitting becomes better ev
only noise is ‘‘modeled’’ in this way. In Ref.@21#, where this
technique was applied first, this is avoided by punishing
addition of terms and the AIC criterion is used instead ofr.
Here, we retain ther measure bearing this remark in min
when we interpret the results from the fit.

We choose this approach because, on the one han
gives a clear indication for the existence or not of nonline
ity, and, on the other hand, it preserves or even amplifies
discrepancies in the autocorrelation, so that we can ea
verify the performance of the AAFT and IAAFT methods

A. The sunspot numbers

We start with the celebrated annual sunspot numb
~e.g., see@22#!. Many suggest that this time series involv
nonlinear dynamics~e.g., see@22# for a comparison of clas
sical statistical models on sunspot data and@23,24# for a
comparison of empirical nonlinear prediction models!. The
sunspot data follow rather a squared Gaussian than a Ga
ian distribution and therefore the AAFT does not reach
high level of accuracy in autocorrelation@see Fig. 3~a!#. Note
that theRy(t) of the reordered noise data$y% follows well
with the Rz(t) of the AAFT, and is even closer to the orig
nal Rx(t). This behavior is reminiscent of that of squar
transformed AR data@see Fig. 1~a! for a52#, which is in
agreement with the comment in@25# that the sunspot num
bers are in first approximation proportional to the squa
magnetic field strength. The conditionRz(t)<uRy(t)u holds,
supporting that the simulation of theh transform~step 3 of
the AAFT algorithm! is successful. Due to the short size
the sunspot data, also IAAFT-1 surrogates cannot mimic p
fectly the autocorrelation, as shown in Fig. 3~b!. On the other
hand, the IAAFT-2 surrogates match perfectly the autoco
lation and follow closely the original amplitude distributio

The discrepancies in autocorrelation are well reflected
the correlation coefficientr from the polynomial modeling
as shown in Fig. 4. To avoid bias in favor of rejecting t
null hypothesis, we use arbitrarilym510 in all our examples
in this section. The fit of the original sunspot data is im
proved as linear terms increase from 1 to 9, and no impro
ment is observed adding the tenth linear term which is
agreement with the choice of AR~9! as the best linear mode
@22#. As expected, this feature is observed for the AAFT a
IAAFT surrogates as well@see Fig. 4~a!#. Further, the inclu-
sion of the first nonlinear term (xi

2), improves the fitting of
the original sunspot numbers, but not of the surrogates.
tually, the Volterra polynomial fitting shows that the intera
tion of xi and xi 21 with themselves and with each other
prevalent for the sunspot data@note the increase ofr(1,i ) for
i 512, i 513, andi 522#. When compared with AAFT sur
-
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rogates this feature is not so obvious mainly due to the la
variance ofr(1,i ) of the AAFT surrogates and the larg
discrepancy from ther(1,i ) of the original data, which per-
sists also for the linear terms~for i 52, . . .,11). For the
IAAFT-1 surrogate data, there is also a small discrepa
due to imperfect matching of the autocorrelation, which d
appears when the IAAFT-2 surrogate data are used inste

The significanceS of the discriminating statisticsr(1,i ),
i 51, . . .,66, shown in Fig. 4~b!, reveals the inappropriate
ness of the use of AAFT. The null hypothesis is reject
even fori 52, . . .,11, i.e., when a linear statistic is used. O
the other hand, using IAAFT-1 or IAAFT-2 surrogate da
only ther(1,i ) for i>m12, i.e., involving nonlinear terms
give Sover the 2s level. For only linear terms,S is at the 2s
level using IAAFT-1 surrogate data and falls to zero wh
IAAFT-2 surrogate data are used instead. Employing as
criminating statistic the difference ofr(1) after, for ex-
ample, the inclusion of thexi

2 term, i.e., q5r(1,12)
2r(1,11), gives for AAFT S51.76s, for IAAFT-1 S
53.35s, and for IAAFT-2S54.05s.

FIG. 3. AutocorrelationR(t) for the sunspot numbers~thick
black line! and its 40 surrogates~gray thin lines!, AAFT in ~a!, and
IAAFT-1 in ~b!. In ~a!, R(t) for the reordered noise ($y% data! is
also shown, with a thin black line for the average value and e
bars for the SD.
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2812 PRE 60D. KUGIUMTZIS
So, even for short time series, for which IAAFT-1 cann
match perfectly the autocorrelation, it turns out that t
IAAFT algorithm distinguishes correctly nonlinear dynami
while following the AAFT algorithm one can be fooled or
least left in doubt as to the rejection of the null hypothes
Here, we had already strong evidence from previous wo
that nonlinear dynamics is present, and used this examp
demonstrate the confusion that the AAFT method can ca
However, if one checks first the autocorrelation of AAF
@Fig. 3~a!#, then these results should be anticipated@Figs.
4~a! and 4~b!#.

B. The AE index data

We examine here a geophysical time series, the aur
electrojet index~AE! data from magnetosphere@26#. Surro-
gate data tests for the hypothesis of nonlinear dynamics h
been applied to records of the AE index of different tim
scales and sizes with contradictory results@27,3,28–30#.

FIG. 4. ~a! Correlation coefficientr(1,i ) as a function of the
terms of the Volterra polynomials (m510, d52, i 51, . . .,66)
for the sunspot numbers~thick black line! and its 40 AAFT,
IAAFT-1, and IAAFT-2 surrogates~gray thin lines! in the three
plots as indicated.~b! SignificanceSof r(1,i ) for AAFT, IAAFT-1,
and IAAFT-2. The vertical line is to stress the insertion of the fi
nonlinear term.
t
e

.
s
to
e.

al

ve

Here, we use a long record of six months, but smoot
resampled to a final data set of 4096 samples@see Fig. 5~a!#.
The amplitude distribution of the AE index data is no
Gaussian and has a bulk at very small magnitudes and a
tail along large magnitudes. This is so, because the AE in
is characterized by resting periods interrupted by periods
high activity probably coupled to the storms of solar wind

For the autocorrelation, it turns out that the AAFT alg
rithm gives positive bias in this case, i.e., the AAFT surr
gates are significantly more correlated than the original. T
Ry(t) of the ordered noise data$y% are slightly larger than
Rx(t), which, according to Sec. II, is a sign that under t
null hypothesis theh transform is not monotonic. Also
Rz(t)<uRy(t)u holds so thath seems to have been simulate
successfully. On the other hand, the IAAFT-1 surroga
match almost perfectly the autocorrelation and represent
actly the null hypothesis~therefore IAAFT-2 surrogate dat
are not used here!.

The r(1,i ) from the Volterra polynomial fit on the origi-
nal AE index shows a characteristic improvement of fitti
with the addition of the first nonlinear term~see Fig. 6!. This
result alone gives evidence for nonlinear dynamics in the
index. However, the surrogate data test using the AAFT d
not support this finding due to the bias and variance in
autocorrelation. To the contrary, as shown in Fig. 6~b!, it
gives the confusing pattern that the null hypothesis is m
ginally rejected at the 95% confidence level with linear d
criminating statistics@r(1,i ) for i 52, . . . ,11#, but not re-
jected with nonlinear statistics@r(1,i ) for i 512, . . . ,66#.
The IAAFT algorithm is obviously proper here. Ther(1,i )
for the IAAFT-1 follows closely ther(1,i ) for the original
only for the linear fitting@Fig. 6~a!#. Consequently, the sig
nificance changes dramatically with the inclusion of the fi
nonlinear term from 1s to 7s and stabilizes at this level fo
all i 512, . . . ,66@Fig. 6~b!#.

The discrimination of the original AE data from AAFT
surrogates can still be achieved by employing the discri

t

FIG. 5. Three real time series of 4096 samples each.~a! The AE
index time series measured every minute over the second ha
1978 and smoothed to a time resolution ofts564 min; the data
range is@6,1500#. ~b! The breath rate time series sampled at
sampling timets50.5 sec; the data range is@212 489,32 740#. ~c!
The EEG time series sampled at a sampling timets50.005 sec;
the data range is@1797,2152#.
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PRE 60 2813TEST YOUR SURROGATE DATA BEFORE YOU TEST . . .
nating statisticq5r(1,12)2r(1,11) giving S55.3s ~and
S56.4s for IAAFT-1!. Actually, the nonlinearity indicated
from the Volterra polynomial fit is very weak and can b
marginally detected with other discriminating statisti
@29,30#. For example, a local fit would give the erroneo
result that the null hypothesis is marginally rejected us
AAFT, but not using IAAFT, because the local fit is main
determined by the linear correlations. In particular, a fit w
LAM ( m510, t51, k510) gave forr(1) significanceS
51.84s for AAFT and onlyS50.3s for IAAFT.

C. Breath rate data

The next real data set is from the breath rate of a pat
with sleep apnea. The time series consists of the first 4
samples of the setB of the Santa Fe Institute time serie
contest@31# @see Fig. 5~b!#. This time series is characterize
by periods of relaxation succeeded by periods of strong
cillations and follows a rather symmetric amplitude distrib
tion but not Gaussian~more spiky at the bulk!. These data

FIG. 6. ~a! Correlation coefficientr(1,i ) as a function of the
terms of the Volterra polynomials (m510, d52, i 51, . . .,66)
for the AE index~thick black line! and its 40 AAFT and IAAFT-1
surrogates~gray thin lines! in the two plots as indicated.~b! Sig-
nificanceSof r(1,i ) for AAFT and IAAFT-1. The vertical line is to
stress the insertion of the first nonlinear term.
g

nt
6

s-
-

are also believed to be nonlinear, but it is not clear whet
the nonlinearity is autonomous or merely due to nonlin
coupling with the heart rate@25#.

The breath rate time series does not have strong lin
correlations. However, AAFT gives again bias in the au
correlation but not large variance, while IAAFT-1 match
perfectly the original autocorrelation~therefore IAAFT-2 is
not used here!.

The Volterra polynomial fit, shown in Fig. 7, reflects e
actly the results on the autocorrelation. For the linear ter
the r(1,i ) for AAFT are rather concentrated at a lev
roughly 10% lower than ther(1,i ) for the original data. This
large difference combined with the small variance does
validate the comparison of AAFT surrogate data to the or
nal data with any nonlinear tool sensitive to data corre
tions. For the IAAFT-1, the situation is completely differen
The perfect matching inr(1,i ) for the linear terms, in com-
bination with the abrupt rise of ther(1,i ) of the breath rate
data after the inclusion of the second~not first! nonlinear
term, constitutes a very confident rejection of the null h

FIG. 7. ~a! Correlation coefficientr(1,i ) as a function of the
terms of the Volterra polynomials (m510, d52, i 51, . . .,66)
for the breath rate data set~thick black line! and its 40 AAFT and
IAAFT-1 surrogates~gray thin lines! in the two plots as indicated
~b! SignificanceS of r(1,i ) for AAFT and IAAFT-1. The vertical
line is to stress the insertion of the first nonlinear term.
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pothesis at the level of at least 25s, as shown in Fig. 7~b!.
It seems that for the modeling of the breath rate data,

interaction ofxi andxi 21 ~term 13) is very important. Using
the discriminating statisticq5r(1,12)2r(1,11) as before
gives significance around 3s for both AAFT and IAAFT,
but using q5r(1,13)2r(1,12) instead gives significanc
about 80s for both AAFT and IAAFT.

D. EEG data

The last example is the measurement of 4096 sam
from an arbitrary channel of an EEG recording assumed
be during normal activity@actually, the record is from an
epileptic patient long before the seizure, see Fig. 5~c!#.
Though the deviation of the amplitude distribution fro
Gaussian is small, the AAFT algorithm gives again lar
bias in the autocorrelation, while IAAFT-1 achieves go
matching. Particularly, the conditionRz(t)<uRy(t)u does
not hold here for smallR values implying that the bias in
autocorrelation may also be due to unsuccessful simula
of h ~in the step 3 of the AAFT algorithm!.

This EEG time series does not exhibit nonlinearity,
least as observed from the one-step-ahead fit with Volt
polynomials~Fig. 8!. Obviously, the difference inr(1,i ) be-
tween original and AAFT surrogates wrongly suggests re
tion of the null hypothesis when the nonlinear Volterra po
nomial fit ~terms.11) is used as a discriminating statisti
This is solely due to the bias in autocorrelation as this d
ference remains also for the linear terms. For IAAFT-1, th
is a small difference inr(1,i ) for the linear terms, as show
in Fig. 8~a!, though IAAFT-1 seems to give good matchin
in the autocorrelation. This probably implies that ther from
the linear fit amplifies even small discrepancies in autoc
relation, not detected by eyeball judgement. Moreover,
small difference inr(1,i ) is significant, as shown in Fig
8~b!, because again IAAFT-1 tends to give dense statist
Remarkably, the significance degrades to less than 2s when
nonlinear terms are added.

We employ IAAFT-2 surrogate data as well@see Fig.
8~a!#. These do not match perfectly the original amplitu
distribution ~especially at the bulk of the distribution!, but
possess exactly the same linear correlations as the orig
as approved also from the linear fit in Fig. 8~a!. For the
IAAFT-2 surrogates, the significance from ther(1,i ) is cor-
rectly less than 2s for both the linear and nonlinear terms
the polynomial fit, as shown in Fig. 8~b!.

We want to stress here that the results on the EEG
are by no means conclusive, as they are derived from a s
lation with a single tool~polynomial fit! on a single EEG
time series. However, they do insinuate that the use of AA
surrogate data in the numerous applications with EEG d
should be treated with caution at least when a striking
ference between the original data and the AAFT surrog
data cannot be established, which otherwise would rule
that the difference is solely due to biased autocorrelation

V. DISCUSSION

The study on the two methods for the generation of s
rogate data that represent the null hypothesis of Gaus
correlated noise undergoing nonlinear static distortion
e

es
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e
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t
ra

-
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al,

ta
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T
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te
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vealed interesting characteristics and drawbacks of their
formance. The most prominent of the two methods, the a
plitude adjusted Fourier transform~AAFT! surrogates, can
represent successfully the null hypothesis only if the sta
transformh is monotonic. This is an important generic cha
acteristic of the AAFT algorithm and not just a technic
detail of minor importance as treated in all applications w
AAFT so far @3–12#. The bias in autocorrelation induced b
the nonmonotonicity ofh can lead to false rejections of th
null hypothesis.

Our simulations revealed a drawback for the oth
method, the iterated AAFT~called IAAFT here!, which was
not initially expected. Depending on the data type, the ite
tive algorithm may naturally terminate while the matching
autocorrelation is not yet exact~we call the derived surrogat
data IAAFT-1!. In this case, all IAAFT-1 surrogate dat
achieve approximately the same level of accuracy in auto
relation. Thus, the variance of autocorrelation is very sm
and therefore the mismatching becomes significant. Con
quently, applying a nonlinear statistic sensitive to data c

FIG. 8. ~a! Correlation coefficientr(1,i ) as a function of the
terms of the Volterra polynomials (m510, d52, i 51, . . .,66)
for the EEG data~thick black line! and its 40 AAFT, IAAFT-1, and
IAAFT-2 surrogates~gray thin lines! in the three plots as indicated
~b! SignificanceS of r(1,i ) for AAFT, IAAFT-1, and IAAFT-2.
The vertical line is to stress the insertion of the first nonlinear te
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relations gives also significant discrimination. So, when
ing IAAFT surrogate data, the exact matching
autocorrelation must be first guaranteed and then differen
due to nonlinearity become more distinct due to the sm
variance of the statistics on IAAFT. In cases in which t
IAAFT-1 data set does not match exactly the original au
correlation, we suggest to use a second data set derived
the same algorithm, IAAFT-2, which possesses exactly
same linear correlations as the original and may slightly
fer in the amplitude distribution. Our simulations suggest
use of IAAFT-2 in general, but there may be cases wher
detailed feature of the amplitude distribution should be p
served~e.g., data outliers of special importance! and then
IAAFT-1 should be used instead.

The application of the AAFT and IAAFT algorithms t
real world data demonstrated the inappropriateness of AA
and the ‘‘too good’’ significance obtained with IAAFT su
rogates if nonlinearity is actually present. The results gen
ally suggest that one has first to assure a good matchin
autocorrelation of the surrogate data to the original bef
using them further to compute nonlinear discriminating s
tistics and test the null hypothesis. If a bias in autocorrelat
is detected, a statistical difference in the nonlinear statis
may also occur and then the rejection of the null hypothe
is not justified by a high significance level because it can
just an artifact of the bias in autocorrelation.

One can argue that whenh is not invertible, then the
assumption that the examined time series stems from
Gaussian process cannot be assessed by this test be
there is not one-to-one correspondence between the m
sured time series$x% and the Gaussian time series$s%, where
ica
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x5h(s). We would like to stress that the hypothesis does
yield a single Gaussian process, but any Gaussian pro
that underh ~even not monotonic! can give $x%, i.e., the
existence of multiple solutions is not excluded. More p
cisely, the null hypothesis states that the examined time
ries belongs to the family of statically transformed Gauss
data with linear properties and deviation from the Gauss
distribution determined by the corresponding sample qua
ties of the original time series. Thus the surrogate data g
erated under the two conditions~matching in autocorrelation
and amplitude distribution! may as well be considered a
realizations of different Gaussian processes statically tra
formed underh. Differences within the different underlying
linear processes are irrelevant when the presence of no
earity is investigated.

Concerning the discriminating statistics, our findings w
synthetic and real data suggest that local models, such a
local average map, are not always suitable to test the
hypothesis and can give confusing results. On the other h
the Volterra polynomial fit turned out to be a useful diagno
tic tool for detecting dynamic nonlinearity directly on th
original data as well as verifying the performance of t
surrogate data because it offers direct detection of change
the discriminating statistic from the linear to nonlinear ca
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